

Partial Multi-Label Learning with Noisy Label Identification Ming-Kun Xie and Sheng-Jun Huang

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing

Partial Multi-Label Learning

模式识别与神经计算研究组

PAttern Recognition and NEural Computing

- Partial multi-label learning (PML) deals with problems where each instance is assigned with a candidate label set, which contains multiple relevant labels and some noisy labels.
 - More specifically, the candidate label set of each training instance indicates the following supervised information:
 - a) the candidate set may consist of both relevant and irrelevant labels;
 - b) the number of relevant labels in the candidate set is at least one; but unknown

Motivation

The candidate set (Accurate ones in black) house tree light car cloud flower cat people

noisy labels are usually caused by some Identify the noisy labels by modeling them based on feature representations

c) label not in the candidate set are irrelevant to the instance.

ambiguous contents of the example

The PML-NI Framework

Based on the observations mentioned above, we propose a new approach for Partial Multi-label Learning with Noisy label Identification (PML-NI), which recovers the ground-truth labeling information and identifies the noisy labels simultaneously.

Firstly, we model the noisy labels as the outputs of a linear mapping from the feature representations as follows:

observed label
$$[\mathbf{y}_i - \mathbf{\tilde{y}}_i] = \mathbf{\hat{V}} \mathbf{x}_i + \mathbf{s} = \mathbf{\hat{V}} \boldsymbol{\phi}_i$$

noisy label ground-truth noisy label identifie

However, the ground-truth label \tilde{y}_i here is unknown and the equation above is thus intractable. To solve the problem, we propose a joint learning framework that can identify the noisy labels while training the multi-label classifier simultaneously

Furthermore, to encourage the classifier and identifier to perform their individual abilities, i.e., the ground-truth label prediction and noisy label identification, we try to capture their intrinsic property and potential structure information by employing different regularizers for each of Uand V.

$$\min_{\boldsymbol{V},\boldsymbol{U},\boldsymbol{V}} \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{W}\boldsymbol{\Phi}\|_{\mathrm{F}}^{2} + \frac{\lambda}{2} \|\boldsymbol{W}\|_{\mathrm{F}}^{2} + \beta \Omega \left(\boldsymbol{U}\right)$$
$$+ \gamma \Psi \left(\boldsymbol{V}\right)$$
$$s.t. \quad \boldsymbol{W} = \boldsymbol{U} + \boldsymbol{V}$$

Utilize the sparsity assumption to capture a few of ambiguous feature representations which lead to the noisy labels

Utilize the low-rank assumption to capture label correlation

$$\min_{\boldsymbol{W},\boldsymbol{U},\boldsymbol{V}} \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{W}\boldsymbol{\Phi}\|_{\mathrm{F}}^{2} + \frac{\lambda}{2} \|\boldsymbol{W}\|_{\mathrm{F}}^{2}$$
$$s.t. \quad \boldsymbol{W} = \boldsymbol{U} + \boldsymbol{V}$$

multi-label classifier

 $\|oldsymbol{V}\|_0$

The final objective function can be re-written as follows

$\min_{oldsymbol{W},oldsymbol{U},oldsymbol{V}}rac{1}{2}\left\ oldsymbol{Y}-oldsymbol{W}oldsymbol{\Phi} ight\ _{\mathrm{F}}^{2}+rac{\lambda}{2}\left\ oldsymbol{W} ight\ _{\mathrm{F}}^{2}+eta\mathrm{rank}(oldsymbol{U})$
$+\gamma \left\ oldsymbol{V} ight\ _{0}$
s.t. $W = U + V$

Fx	periment
レハ	Jei meni

Table 2: Experimental results of each containing loss, where \bullet/\circ indicates whether PML-NI is Table 3: Experimental results of each comparing approach in terms of <i>average precision</i> , where \bullet/\circ indicates whether PML-NI \bullet																							
superior/inferior to the other method.										neuner PIVIL-INI 18	is superior/inferior to the other method.												
🔰 🌔 Data	sets				Data	$\alpha\%$	PML-NI	PAR-VAL	PAR-MAP	PML-LRS	ML-kNN	CPLST	Data	$\alpha\%$	PML-NI	PAR-VAL	PAR-MAP	PML-LRS	ML-kNN	CPLST			
					music_emotion		$.251 \pm .009$	$.265 \pm .008 \bullet$	$.253 \pm .008 \bullet$	$.256 \pm .002 \bullet$	$.257 \pm .006 \bullet$	$.364 \pm .009 \bullet$	music_emotion		$.598 \pm .010$	$.607 \pm .010\circ$	$.611 \pm .011$ \circ	$.589 \pm .006 \bullet$	$.595 \pm .007 \bullet$	$.506 \pm .009 \bullet$			
	Table 1: Characteristics of the experimental data sets.				music_style		$.141 \pm .003$	$.157 \pm .002 \bullet$	$.164 \pm .004 \bullet$	$.148 \pm .006 \bullet$	$.157 \pm .005 \bullet$	$.232 \pm .006 \bullet$	music_style		$.731 \pm .003$	$.713 \pm .004 \bullet$	$.710 \pm .007 \bullet$	$.714 \pm .008 \bullet$	$.717 \pm .011 \bullet$	$.658 \pm .009 \bullet$			
Data set	# Instances	# Features 98	# Class Labels (CardinalityDomain2.42music	_	50%	$.190 \pm .014$	$.438 \pm .058 \bullet$	$.285 \pm .021 \bullet$	$.302 \pm .018 \bullet$	$.324 \pm .040 \bullet$	$.252 \pm .012 \bullet$		50%	$.507 \pm .019$	$.413 \pm .034 \bullet$	$.395 \pm .024 \bullet$	$.371 \pm .030 \bullet$	$.370 \pm .037 \bullet$	$.451 \pm .015 \bullet$			
music_emotion music_style	6839	98	10	2.42 music 1.44 music	- birds	100%	$.207 \pm .019$	$.400 \pm .046 \bullet$	$.298 \pm .017 \bullet$				birds	100%	$.466 \pm .013$	$.416 \pm .042 \bullet$	$.386 \pm .024 \bullet$	$.352 \pm .033 \bullet$	$.366 \pm .037 \bullet$	$.410 \pm .033 \bullet$			
birds	654	260	19	2.402 music	=	150%	$.236 \pm .028$	$.466 \pm .066 \bullet$	$.307 \pm .026 \bullet$	$.330 \pm .014 \bullet$	$.331 \pm .030 \bullet$	$.293 \pm .013 \bullet$		150%	$.419 \pm .026$	$.392 \pm .033 \bullet$	$.369 \pm .023 \bullet$	$.344 \pm .031 \bullet$	$.352 \pm .017 \bullet$	$.387 \pm .040 \bullet$			
genbase medical	662 978	1186 1449	27	1.252 biology 1.245 text	_	50%	$.003 \pm .001$	$.025 \pm .013 \bullet$	$.012 \pm .006 \bullet$	$.017 \pm .004 \bullet$	$.008 \pm .004 \bullet$	$.050 \pm .010 \bullet$		50%	$.980 \pm .005$	$.895 \pm .022 \bullet$	$.968 \pm .020 \bullet$	$.860 \pm .022 \bullet$	$.948 \pm .011 \bullet$	$.738 \pm .028 \bullet$			
enron	1702	1449	53	1.245 text 3.378 text	genbase	100%	$.004 \pm .002$	$.059 \pm .030 \bullet$	$.010 \pm .004 \bullet$	$.017 \pm .003 \bullet$	$.011 \pm .004 \bullet$	$.063 \pm .018 \bullet$	genbase	100%	$.971 \pm .010$	$.819 \pm .039 \bullet$	$.965 \pm .019 \bullet$	$.851 \pm .025 \bullet$	$.920 \pm .055 \bullet$	$.723 \pm .030 \bullet$			
image	2000	294	5	1.23 image		150%	$.010 \pm .003$	$.017 \pm .008 \bullet$	$.011 \pm .004 \bullet$	$.031 \pm .008 \bullet$	$.027 \pm .007 \bullet$	$.075 \pm .016 \bullet$		150%	$.922 \pm .022$	$.897 \pm .042 \bullet$	$.960 \pm .010$ \circ	$.785 \pm .049 \bullet$	$.773 \pm .069 \bullet$	$.612 \pm .020 \bullet$			
bibtex corel16k	7395	1836 500	159	2.402 text 2.867 image	_	50%	$.023 \pm .005$	$.157 \pm .034 \bullet$	$.071 \pm .015 \bullet$	$.048 \pm .013 \bullet$	$.047 \pm .008 \bullet$	$.089 \pm .008 \bullet$		50%	$.819 \pm .010$	$.703 \pm .021 \bullet$	$.737 \pm .029 \bullet$	$.738 \pm .034 \bullet$	$.737 \pm .014 \bullet$	$.592 \pm .027 \bullet$			
tmc2007	21519	500	22	2.867 image 2.158 text	medical	100%	$.023 \pm .007$	$.155 \pm .035 \bullet$	$.074 \pm .017 \bullet$	$.049 \pm .008 \bullet$	$.047 \pm .008 \bullet$	$.097 \pm .010 \bullet$	medical	100%	$.809 \pm .017$	$.680 \pm .020 \bullet$	$.714 \pm .031 \bullet$	$.724 \pm .020 \bullet$	$.734 \pm .014 \bullet$	$.568 \pm .027 \bullet$			
					=	150%	$.025 \pm .005$	$.147 \pm .029 \bullet$	$.073 \pm .013 \bullet$	$.053 \pm .005 \bullet$	$.049 \pm .005 \bullet$	$.102 \pm .015 \bullet$		150%	$.758 \pm .016$	$.673 \pm .013 \bullet$	$.675 \pm .018 \bullet$	$.665 \pm .014 \bullet$	$.664 \pm .032 \bullet$	$.498 \pm .031 \bullet$			
Comparison Results				50%	$.175 \pm .013$	$.318 \pm .070 \bullet$	$.188 \pm .047 \bullet$	$.163 \pm .021$ \circ	$.180 \pm .007 \bullet$	$.301 \pm .019 \bullet$		50%	$.563 \pm .013$	$.297 \pm .132 \bullet$	$.432 \pm .068 \bullet$	$.528 \pm .022 \bullet$	$.450 \pm .017 \bullet$	$.350 \pm .004 \bullet$					
			enron	100%	$.176 \pm .012$	$.376 \pm .088 \bullet$		$.168 \pm .012$ \circ	$.190 \pm .011 \bullet$	$.294 \pm .011 \bullet$	enron	100%	$.494 \pm .017$	$.271 \pm .129 \bullet$	$.398 \pm .081 \bullet$	$.474 \pm .019 \bullet$	$.412 \pm .016 \bullet$	$.346 \pm .013 \bullet$					
				150%	$.178 \pm .013$	$.366 \pm .077 \bullet$			$.196 \pm .011 \bullet$	$.297 \pm .017 \bullet$		150%	$.474 \pm .014$	$.264 \pm .120 \bullet$	$.397 \pm .058 \bullet$	$.453 \pm .021 \bullet$	$.395 \pm .017 \bullet$	$.326 \pm .022 \bullet$					
comp	arison	Resu	115			50%	$.175 \pm .005$	$.195 \pm .045 \bullet$	$.267 \pm .102 \bullet$	$.187 \pm .010 \bullet$	$.186 \pm .016 \bullet$	$.189 \pm .019 \bullet$		50%	$.780 \pm .007$	$.770 \pm .055 \bullet$		$.765 \pm .013 \bullet$	$.767 \pm .015 \bullet$	$.766 \pm .019 \bullet$			
When compare PML-NI approach			image	100%	$.178 \pm .009$	$.198 \pm .042 \bullet$	$.267 \pm .099 \bullet$	$.182 \pm .014 \bullet$	$.190 \pm .012 \bullet$	$.189 \pm .010 \bullet$	image	100%	$.782 \pm .006$	$.767 \pm .051 \bullet$		$.772 \pm .016 \bullet$	$.763 \pm .016 \bullet$	$.769 \pm .007 \bullet$					
			pproach		150%	$.183 \pm .006$	$.205 \pm .059 \bullet$	$.265 \pm .139 \bullet$	$.185 \pm .015 \bullet$	$.212 \pm .013 \bullet$			150%	$.772 \pm .007$	$.760 \pm .068 \bullet$		$.770 \pm .016 \bullet$		$.757 \pm .015 \bullet$				
		•	•			50%				$.042 \pm .002 \bullet$				50%			$.831 \pm .006 \bullet$						
with oi	rner m	ietno	is, our (algorithm	bibtex	100%				$.035 \pm .004 \bullet$			bibtex	100%	$.889 \pm .007$		$.816 \pm .011 \bullet$						
shows significant superiority. It achieves the best performance in					150%				$.035 \pm .003 \bullet$				150%			$.816 \pm .009 \bullet$							
				11/1	50%				$.214 \pm .003 \bullet$			corel16k	50%			$.484 \pm .003 \bullet$							
				corel16k	100%	$.224 \pm .004$			$.226 \pm .004 \bullet$				100%	$.483 \pm .007$		$.454 \pm .007 \bullet$							
achieves the best per joi munce in						130%				$.228 \pm .001 \bullet$				150%	$.487 \pm .006$		$.455 \pm .009 \bullet$						
most cases.					tmc2007	50% 100%				$.046 \pm .001 \bullet$				50%			$.783 \pm .022 \bullet$						
					tmc2007	100%				$.047 \pm .002 \bullet$ $.050 \pm .002 \bullet$			tmc2007	100%	$.803 \pm .003$ $702 \pm .002$		$.785 \pm .021 \bullet$ $.760 \pm .026 \bullet$						
						130%	$.050 \pm .002$.107 ± .023●	•010. \pm 000.	$.050 \pm .0020$	$.002 \pm .001$	•100. \pm 000.		130%	$.793 \pm .003$.070 ± .033●	$.760 \pm .036 \bullet$	$.192 \pm .000 \bullet$	$000. \pm 011$	<u>.121 ± .002</u> ●			